
THE ROC CURVES OF FUSED INDEPENDENT CLASSIFICATION

SYSTEMS

THESIS

Michael B. Walsh

AFIT/GAM/ENC/08/06

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.



AFIT/GAM/ENC/08/06

THE ROC CURVES OF FUSED INDEPENDENT CLASSIFICATION
SYSTEMS

THESIS

Presented to the Faculty

Department of Mathematics and Statistics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Mathematics

Michael B. Walsh, B.A., B.S.

September 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/GAM/ENC/08/06

THE ROC CURVES OF FUSED INDEPENDENT CLASSIFICATION
SYSTEMS

Michael B. Walsh, B.A., B.S.

Approved:

Dr. Mark E. Oxley
Thesis Advisor

date

Maj Steven N. Thorsen
Committee Member

date

Dr. Kenneth W. Bauer, Jr.
Committee Member

date



Acknowledgements

I am so thankful for the great minds who have gone before me, shedding light in the

darkness and bringing order out of chaos.

My wife and children deserve a lot of credit for the sacrifices they have made, and

continue to make, so that I might pursue graduate studies in mathematics.

Michael B. Walsh

iv



Table of Contents
Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II. Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Philosophical Background . . . . . . . . . . . . . . . . . . . . 3
2.2 Types of Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Example Fusion Scenarios . . . . . . . . . . . . . . . . . . . . 4
2.4 Classification System Theory . . . . . . . . . . . . . . . . . . 6
2.5 Performance Measures . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Boolean Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

III. Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 OR Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 AND Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Epimorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

IV. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Two Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Three Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 31

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



List of Figures

Figure Page

2.1. Label Fusion of Multiple Classfication Systems. . . . . . . . . . . . 5

2.2. Label Fusion After Data Fusion Has Occurred. . . . . . . . . . . . . 5

2.3. Label Fusion After Feature Fusion Has Occurred. . . . . . . . . . . 5

2.4. Typical Type I and Type II Errors. . . . . . . . . . . . . . . . . . . 9

2.5. A ROC trajectory and its projection. . . . . . . . . . . . . . . . . . 10

2.6. Possible Fusion Rules for Two Binary Decisions [16]. . . . . . . . . 16

4.1. ROC Curves of Classification System Families A and C. . . . . . . . 32

4.2. ROC Curves of Classification Systems A and C, Label Fused. . . . 32

4.3. ROC Curves of Classification System Families A, B, and C. . . . . . 33

4.4. ROC Curves of Classification Systems A, B, and C, Label Fused. . 33

4.5. ROC Curves of Classification Systems A, B, and C with Majority Rule. 34

vi



AFIT/GAM/ENC/08/06

Abstract

The need for optimal target detection arises in many different fields. Due to the

complexity of many targets, it is thought that the combination of multiple classification

systems, which can be tuned to several individual target attributes or features, might lead

to more optimal target detection performance. The ROC curves of fused independent

two-label classification systems may be generated by the mathematical combination of

their ROC curves to achieve optimal classifier performance without the need to test every

Boolean combination. The monotonic combination of two-label independent classification

systems which assign labels to the same target types results in a lattice of ROC curves

which are epimorphic to the corresponding combinations of classification systems. Provided

the ROC curves of individual systems are available, testing the lattice of ROC curves in

software with existing individual ROC curves can represent a significant cost savings in

the design of optimal classification systems.
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THE ROC CURVES OF FUSED INDEPENDENT CLASSIFICATION

SYSTEMS

I. Introduction

1.1 Motivation

The need to detect the presence of a target in temporal, spatial, or spectral settings

arises in many fields of study; in medicine, the detection of a cancer; in marketing, the

detection of the best customer base; in the national command structure, the detection of

military targets in a theater of operation. The process of labeling or classifying a target

typically begins with a sensor which detects certain attributes, generating raw data. The

data might need further processing to allow for the extraction of desired features, which

may not be directly measurable. Once criteria necessary for making a decision about the

presence of a target is obtained, one can label or classify the targets and non-targets.

Since most targets are composed of many parts, it may be necessary to detect multiple

attributes prior to accurately assigning the target label. Hence it is often thought that the

combination of multiple classification systems, which may use the same or diverse feature

sets, gives more accurate and reliable information than the use of a single classification

system.

1.2 Problem Statement

In two-class scenarios the combination of multiple classification systems may be done

in many different ways. What is of interest are combinations yielding the best true pos-

itive rates while keeping the false alarm rate below acceptable thresholds. Since we are

investigating two-label classification systems, it makes the most sense to use Boolean rules,

thereby leveraging all that is known with regard to Boolean Algebras towards our field of

target classification. In fact, if we consider the whole set, the empty set, the meet, join,

and complement of every Boolean rule, we are indeed generating a Boolean Algebra of

Classification System families. How well a particular Boolean combination performs can
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be quantified by using what is known as a Receiver Operating Characteristic (ROC) curve,

which was originally developed to analyze radar signals and employed in signal detection

theory [17]. For one to consider any fusion rule other than Boolean, one should be con-

vinced that it performs better than or equal to any combination in our Boolean Algebra.

When considering the Boolean combination of multiple classification systems, one would

be most interested in finding a combination of Boolean operations on the classification sys-

tems which yields optimal performance without having the need to test each combination.

This way a substantial cost savings could be realized.

1.3 Scope

For the purpose of this thesis we will investigate the combination of multiple two-

label independent classification systems. This is sometimes referred to as decision fusion

or label fusion, not to be confused with data fusion, or feature fusion, both of which may

occur earlier in the target detection process. We will restrict our attention to classifiers

which assign the same target labels. Classifiers which assign labels at different levels in the

same genera may be combined as well, but this is known as hierarchical fusion. We will not

consider classifiers which have more than two labels (e.g. friend, foe, unknown) since the

mathematics and transforms to handle these are beyond the capability of the ROC curve

to represent. Independent classification systems will be considered, while correlated ones

will be avoided to keep the manipulation of conditional probabilities manageable. Once a

target has been classified, further refinements might be made, which can be grouped under

what is known as target identification.
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II. Mathematical Background

This chapter will discuss the mathematical theory needed for the main results.

2.1 Philosophical Background

A classifier, which assigns a binary label (true/false or target/no target), does so

based upon information provided to it, and in reference to a model. The classifier model

contains a set of attributes or features germain to the target. The data which is fed to a

classification system may be thought of as a combination of noise and signal. As the data

is processed through algorithms and filters features are extracted from it. The features

or attributes present in the data set are matched against a set of criteria from the model

feature set. Each feature-based criterion may be a threshold value (real valued), a binary

state (integer/discrete), an m-ary state (e.g. radio button), and the like. Complicated

targets having multiple attributes may require more in-depth classifier models. Those at-

tributes which are directly measurable are called data, while those which require processing

to extract are called features. Ultimately all of the attributes necessary are assembled to

compare with a classifier model to make the classification. For example, a fingerprint from

the right index finger is sufficient to identify every living person, and that is based upon a

set of attributes resident in that one fingerprint. In most situations, several attributes are

compared with the model prior to a classification. In our research, we will restrict ourselves

to single attribute based classifiers. This simplifies the math insofar as we can look at one

attribute at a time, and if the attribute is real valued the threshold in the model may be

varied to allow a look at true positive versus false positive rates as a function of the varied

threshold, which we will call the classifier’s parameter.

2.2 Types of Fusion

There are many ways of fusing outputs from multiple classifiers. Depending on user

requirements, fusion may occur at the data, feature, or label phases of the classification

process. Our focus will be the fusion of multiple labels to generate a total label.
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In many applications, data from multiple sensors are pipelined to a common proces-

sor. These data may represent different aspects of an event. It is not as common to find

systems which fuse identical data sets unless a further requirement of double, triple, or

quadruple redundancy is imposed. Once the data is in a common bucket, whether that

be spatial, temporal, or spectral, it may be processed through necessary algorithms to

extract desired features. Often it is most economical to get disparate data from multiple

sensors to a common CPU, where one can focus all of one’s algorithmic development on

one processor, and leave the individual sensors less sophisticated and less costly.

Extracting attibutes of interest often narrows the amount of data one has to carry

around prior to target classification. If one can obtain the principal components of a

matrix of data, in most cases, one can eliminate the components which have the least

significance, reducing the size of the model [4]. Transmission of data also plays into this

game, since the size of the data pipe might require an intelligent shrinking of the data set

so as not to saturate the pipeline. For example, as satellite-borne sensors move towards

hyperspectral data collections, with ever increasing data sets, the need to perform onboard

feature extraction and feature fusion prior to transmission becomes paramount [14].

The definition of label fusion is the combination of classifier labels after the target/no

target assignment has been made. The nice characteristic about this type of fusion is that

the amount of data to be handled is quite small. In this research, which is restricted to

signature classifiers with one parameter and a label space which is common among the

classifiers, we have the ability of capturing the performance of each classifier as a function

of its parameter with a ROC curve. If a classifier were to have multiple parameters,

one could still generate (many) ROC curves by keeping all other parameters fixed while

allowing one parameter to vary. From the collection of ROC curves one could chose

the piecewise continuous frontier at each false positive threshold, saving the values of the

parameters which yielded each point on the ROC curve frontier.

2.3 Example Fusion Scenarios

The following diagrams show various ways classification systems may be formed and

fused.
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D1 F1 L1

s1 Data
p1→ Feature aθ→ Label r

E ↗ D2 F2 L2 ↘ L
Event s2 Data

identity→ Feature
bφ→ Label −→ Label

↘ D3 F3 L3 ↗
s3 Data

p3→ Feature cδ→ Label

Figure 2.1: Label Fusion of Multiple Classfication Systems.

D1 r F1

s1 Data −→ D4
p1→ Feature r

E ↗ D2 Data ↘ L
Event s2 Data ↗ Label

↘ D3 F2 ↗
s3 Data −→ −→ p2→ Feature

Figure 2.2: Label Fusion After Data Fusion Has Occurred.

D1 F1 r
s1 Data

p1→ Feature ↘ F4 L1 r
E ↗ D2 F2 Feature aθ→ Label ↘ L

Event s2 Data
identity→ Feature ↗ Label

↘ D3 F3 L2 ↗
s3 Data

p3→ Feature −→ −→
bφ→ Label

Figure 2.3: Label Fusion After Feature Fusion Has Occurred.
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2.4 Classification System Theory

The following mathematical treatment is attributed to Schubert, Oxley, and Bauer

[13].

Let E be a population set of outcomes. Let E be a σ-algebra of subsets of E , then

(E , E) is a measurable space [10]. Let PE be a probability measure defined on E, then

(E ,E,PE) is a probability measure space[10]. Let s be a sensor that produces data as its

output, i.e., s is a mapping of outcomes from the population set E to a datum. Let D

denote the data set. Then we write s : E → D or its diagram E s−→ D. Let D be a σ

-algebra of subsets of D, then (D,D) is a measurable space.[2]. A mapping, p, defined on D

is used to produce an element x, called a feature. Let the mapping p represent a processor

that takes a datum from D and produces a feature, i.e., p : D → F or its diagram D p−→ F

. Since x is typically a vector of real numbers, then, F ⊂ RN for some positive integer

N . Let F be a σ-algebra of subsets from F , then ( F ,F) is a measurable space. Let Θ

be a threshold set (or a set of parameters); typically, Θ = [0, 1] or Θ = R = (−∞,∞).

For each θ ∈ Θ let aθ be a classifier mapping F into a label set L. That is, aθ : F → L

or F aθ−→ L for each θ ∈ Θ. Thus, assume (L,L) is a measurable space where L is the

power set of L. For a two-class problem, examples of a label set could be L = {true,

false}, L = {T,F},L = {0, 1} or even L = {target,non-target}. For some classifiers the

label set is a continuum, e.g., L = R. In this thesis, L = {t, n} where t = “target” and

n = “non-target”. The simple graphical representation of these mappings is given in the

following diagram.

E s // D
p // F

aθ // L .

Define the system Aθ to be the composition of these mappings for each θ ∈ Θ. That is,

for each θ ∈ Θ, Aθ = aθ ◦ p ◦ s. Graphically, the diagram for the system is written as

E
Aθ // L .

The Receiver Operator Characteristic (ROC) Curve depicts the trade-off between

true positives and false positives for every allowable threshold of the classifier. The per-

formance functional (which will be defined later), when applied to the ROC curve, gives
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the classfication analyst something by which to measure the goodness of a classifier. The

following mathematical development introduces the ROC curve.

Each mapping in the classification system, as well as the composition of mappings,

has a pre-image. The general definition of a pre-image follows [9]:

Definition 1. (Pre-image) Let X and Y be a nonempty sets. Let the mapping f take an

element from X and map it into Y, that is, f : X → Y. Given a subset Y ⊂ Y we define

the pre-image of f to be the subset in X by

f \(Y ) = {x ∈ X : f(x) ∈ Y }.

Thus, the pre-image of a subset Y in Y is all the elements in X that are mapped by f into

Y .

The pre-image is sometimes called the inverse image [2], although the mapping f

need not be invertible, yet the superscript −1 is used. Because this construction creates

a natural mapping from subsets of Y into subsets of X , the natural symbol \ will be used

instead of −1. Therefore, we write f \(Y ) = X. If we consider the entire classification

system as a composition of mappings, then we can write the pre-image of a specific label,

` ∈ L = {`1, ...`n}, produced by the classification system Aθ . Let L`i = {`i} so that

L = L`1 ∪L`2 ∪ ...L`n then A\
θ(L`) = {e ∈ E : Aθ(e) ∈ L`}. The use of pre-images allows us

to take the resulting labels and express these in terms of the underlying probabilities [9].

Assume the label set is L = {t, n} where t and n may be real values or symbols and

the label t represents a “target” and the label n represents a “non-target”. Define Lt = {t}

and Ln = {n}. The event set E can be partitioned into a target event set containing all

target outcomes and a non-target event set containing non-target outcomes. Denote the

true target event set as Et and the true non-target event set as En. Thus, E = E t∪ En and

Et∩ En = ∅.

In order to quantify how well the classification system Aθ performs, we appeal to

the probability measure space (E ,E,P ) to compute the following four performance quanti-

fiers. Let PTP (Aθ) denote the probability of true positive classification of the classification

system Aθ. Then PTP (Aθ) is the probability that the classification system Aθ labels an

7



outcome, e, as a target label, t, given that the outcome really is a target outcome from the

target event set, Et. Mathematically, PTP (Aθ) is defined by the conditional probability

PTP (Aθ) = P{Aθ(e) = t | e ∈ Et} =
P
(
A\
θ (Lt) ∩ Et

)
P (Et)

.

Let PFP (Aθ) denote the probability of false positive classification of the system Aθ. Then

PFP (Aθ) is the probability that the classification system Aθ labels an event outcome, e,

as a target label, t, given that the outcome is really a non-target from the non-target set

of the event set, En. This is Type II error [7]. Mathematically, PFP (Aθ) is defined by the

conditional probability

PFP (Aθ) = P{Aθ(e) = t | e ∈ En} =
P
(
A\
θ (Lt) ∩ En

)
P (En)

.

Let PTN (Aθ) denote the probability of true negative classification of the system Aθ. Then

PTN (Aθ) is the probability that the classification system Aθ labels an event outcome,

e, as a non-target label, n, given that the outcome really is a non-target outcome from

the non-target event set, En. Mathematically, PTN (Aθ) is defined by the conditional

probability

PTN (Aθ) = P{Aθ(e) = n | e ∈ En} =
P
(
A\
θ (Ln) ∩ En

)
P (En)

.

Let PFN (Aθ) denote the probability of false negative classification by the system Aθ. Then

PFN (Aθ) is the probability that the classification system Aθ labels an event outcome, e,

as a non-target label, n, given that the outcome is really a target outcome from the target

event set, Et. This is known as Type I error [7]. Mathematically, PFN (Aθ) is defined by

the conditional probability

PFN (Aθ) = P{Aθ(e) = n | e ∈ Et} =
P
(
A\
θ (Ln) ∩ Et

)
P (Et)

.

Note that each of these four probabilities are dependent on the threshold value, θ. A

single value for each of these probabilities is computed for each value of θ. As the value

8



Figure 2.4: Typical Type I and Type II Errors.

of θ changes, so do the values of PFP (Aθ), PTP (Aθ), PTN (Aθ) and PFN (Aθ). A good

illustration of these probabilities is found in Figure 2.4.

Define Θ as a set of possible thresholds and for each θ ∈ Θ, and the set of triples

τA = {(θ, PFP (Aθ), PTP (Aθ)) : θ ∈ Θ}

to be the trajectory of A [9], [13]. We can project this trajectory onto the second and third

component to yield the set

fA = {(PFP (Aθ), PTP (Aθ)) : θ ∈ Θ}.

If Θ is homeomorphic to the real numbers R, then the trajectory τA will be a curve

in R3 and the projection fA will be a curve in R2 (more specific, a curve in the unit square

[0, 1]× [0, 1]). Formally, this curve is called the ROC curve for the system family A. For

9



Figure 2.5: A ROC trajectory and its projection.

the case when Θ is discrete, the ROC “curve” is a set of discrete points. An example of

this projection is given in Figure 2.5.

If Θ is a multi-dimensional set then this analysis will not yield a single curve in the

PFP -PTP plane. Instead, a collection of curves is created. Therefore, we choose the upper

frontier to be the ROC curve as representative of the classifier performance.

Definition 2. (ROC function, ROC curve) Let A = {Aθ : θ ∈ Θ} be a family of classifica-

tion systems defined on the probability space (E ,E, P ) mapping to the label set L = {t, n}

with parameter set Θ. For each p ∈ [0, 1] , define the set

Θp ≡ {θ ∈ Θ : PFP (Aθ) ≤ p}.

For p ∈ [0, 1], if Θp is nonempty then define

fA(p) = max{PTP (Aθ) : θ ∈ Θp}. (2.1)

10



If Θp is empty then fA(p) is not defined. The function fA is called the ROC function. The

graph of fA is called the ROC curve [9].

In practice, the set Θp may be empty for certain values of p. We avoid the discussion

of this case and assume that the ROC function is defined for all p ∈ [0, 1]. We make this

clear by defining a total ROC function.

The set of total ROC functions may be defined as:

R = {f : [0, 1]→ [0, 1] | f is non-decreasing on [0, 1]}.

A property of a total ROC curve are given in the following theorem [9].

Theorem 1. Let A = {Aθ : θ ∈ Θ} be a family of classification systems. Then fA is a

non-decreasing function. That is, for every p, q ∈ [0, 1] with p ≤ q then fA(p) ≤ fA(q).

Proof. Let p, q ∈ [0, 1] with p ≤ q then Θp ⊆ Θq therefore,

fA(p) = max
θ∈Θp

PTP (Aθ) ≤ max
θ∈Θq

PTP (Aθ) = fA(q).

Definition 3. (Set of total ROC functions) Let the set of total ROC functions be denoted

by

R = {f : [0, 1]→ [0, 1] | f is non-decreasing on [0, 1]}.

Notice that we do not require the functions to be continuous.

We write f = g to mean the point-wise equality, that is, f(p) = g(p) for all p ∈ [0, 1].

2.5 Performance Measures

The Receiver Operator Characteristic (ROC) Curve depicts the trade-off between

true positives and false positives for every allowable threshold of the classifier. The per-

formance functional (which will be defined later), when applied to the ROC curve, gives
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the classfication analyst something by which to measure the goodness of a classifier. The

following mathematical development introduces the ROC curve.

The ROC Curve depicts the trade-off between true positives and false positives for

every allowable threshold of the classifier. A performance functional, when applied to the

ROC curve, gives the classfication analyst something by which to measure the goodness of

a classifier. For example, if one pays attention to the upper left corner of the graph, ROC

heaven as it were, one might be tempted to grade a ROC curve on how closely it approaches

this corner [3]. For example, one might view the point of closest approach of the ROC

curve to the corner by the euclidean norm or by the one norm as a measure of how well the

system is performing. In the Neyman-Pearson method, a false alarm rate is specified, and

the optimal performance is found by the fusion combination that maximizes the vertical

distance above the chance line [8]. The chance line joins the vertices (0,0) and (1,1) in the

ROC curve diagram. The Bayesian Risk of a ROC curve can be bounded by a line through

the ROC heaven corner, whose slope depends upon the weighting between the cost of false

negative versus the cost of false positive. If the costs are equal, then the line will be parallel

to the chance line (45 deg), and the minimum cost is found by the tangent to the ROC

curve that is parallel to the chance line. As the weights are adjusted, the tangent line

tracks the angle of the Bayesian Risk bound [5]. Another measure of goodness is the area

under the curve (AUC). While this does reward good performers, there are many cases

where two ROC curves would achieve the same score, even though one would obviously be

better by how much more to the left of the chart it lived than its ”equal” counterpart. The

Summary Receiver Operator Characteristic SROC curve represents another performance

measure which has seen increased emphasis in the statistical community [11].

Consider the case when two sensors, s1 and s2, observe outcomes occurring in the

same population set E . Assume they produce data in data sets D1 and D2. That is,

s1 : E → D1 and s2 : E → D2. Further, assume sensors s1 and s2 each have a processor, p1

and p2, respectively, which maps datum in the respective data sets, D1 and D2, to features

in feature sets F1 and F2. In particular, assume p1 : D1 → F1 and p2 : D2 → F2.

Suppose that the family of classifiers for p1 and s1 is given by {aθ : θ ∈ Θ} and that

the family of classifiers for p2 and s2 is given by another family, {bφ : φ ∈ Φ}. Let

12



aθ : F1 → L1 for each θ ∈ Θ and bφ : F2 → L2 for each φ ∈ Φ. Then the labels

that are produced from each of the classification systems are fused together to create an

overall label for the outcome of interest. The composition of these mappings yield systems

represented by the following diagram.

D1 p1 F1 aθ L1

s1 Data −→ Feature −→ Label

E ↗ ↘ L

Event Label

↘ D2 p2 F2 bφ L2 ↗

s2 Data −→ Feature −→ Label

We will suppress the text to simplify the diagram to the following

D1
p1 // F1

c1 // L1

E

s1
>>~~~~~~~~

s2

  @
@@

@@
@@

@

D2
p2 // F2

c2 // L2

For these two classification systems the compositions yield the systems Aθ = aθ ◦p1 ◦ s1

for each θ ∈ Θ and Bφ = bφ ◦ p2 ◦ s2 for each φ ∈ Φ. Thus, the individual diagrams are

E
Aθ // L1

E
Bφ // L2

and the two families of classification systems are given by A ≡ {Aθ : θ ∈ Θ} and B ≡ {Bφ :

φ ∈ Φ} (See ref. [9]). The two classification systems developed above map outcomes from

the population set into different data, feature, and label sets, which are then used to fuse

the classification systems together.

There are, however, other ways to label outcomes from the event set. In this paper,

classification systems can map outcomes into either the same or different data sets or the

13



same or different feature sets. The sets which must remain the same for the mathematical

development contained herein are the event set E and the two-class label set L. Therefore,

the classification systems must be acting from the same event set, map into either the same

or different data and feature sets and eventually map into the same label set. These labels

are combined together to generate one overall label for that outcome.

In this paper, we assume that the two classification systems are independent or

uncorrelated. That is, the occurrence or non-occurrence of an event classified by one

system will not affect the occurrence or non-occurrence of another event classified by the

other system. This simplifies the expression of conditional probabilities.

We will also only consider two label classifiers.. That is, the label set for all systems

considered, including each individual system and the fused classification system, contains

two values or two classes. Examples of possible members of this label set were given

previously, but the label set considered here is L = {t, n} where t = “target” and n =

“non-target”.

Using the premises of label fusion, a two-class label system, and classifier indepen-

dence, representations for a two classification system are developed.

The OR rule is a binary operation defined on L. Define the OR operation by ∨. Its

definition is given in the table:

∨ t n

t t t

n t n

Then the new classification system COR
θ,φ is defined by the point-wise OR operation

COR
θ,φ(e) = Aθ(e) ∨Bφ(e) for all e ∈ E (2.2)

and yields a new classification system family COR = {COR
θ,φ : θ ∈ Θ, φ ∈ Φ}. Thus, to be

labeled as “target”, either the label from Aθ or Bφ must be the ”target” t label [9].
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The AND rule is a binary operation defined on L. We denote this operation by ∧.

Its definition is given in the table:

∧ t n

t t n

n n n

The new classification system CAND
θ,φ is defined by the point-wise AND operation on its

output, that is,

CAND
θ,φ (e) = Aθ(e) ∧Bφ(e) for all e ∈ E . (2.3)

This produces a new classification system family CAND = {CAND
θ,φ : θ ∈ Θ, φ ∈ Φ}. Thus,

to be labeled as “target”, both the label from Aθ and Bφ must be the target “t ” label [9].

The NOT rule is a unary operation defined on L. We denote the NOT operation by

⇁. Its definition is given in the table:

⇁ t n

n t

Then the new classification system ⇁Aθ is defined by the point-wise NOT operation

[⇁Aθ] (e) ≡⇁[Aθ(e)] for all e ∈ E (2.4)

and yields a new classification system family CNOT = {⇁Aθ : θ ∈ Θ}. Thus, to be labeled

as “target”, the label from system Aθ must be the “non-target” n label. For brevity we

write ⇁A = CNOT . Clearly, the NOT rule is not a fusion rule, but it will be used in certain

situations [9].

A fusion rule is a method of combining multiple classifiers presumably with the intent

of achieving better performance. Since the outcome of our classifiers is binary, either

target/no target, then it is reasonable that some Boolean rule might express the optimal

combination of classifiers. It is a well known fact that the total number of possible binary

outputs of k combinations of two label classifiers is 22k [16]. Listed below is all possible

binary outcomes with just k = 2 binary classifiers.
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u1 u2 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 2.6: Possible Fusion Rules for Two Binary Decisions [16].

One can demonstrate that, using ANDs, ORs, and NOTs one can populate or cover

this entire set. But that is not the object here. Many of the rules listed in Figure 2.6

are poor performers. Identifying the best performers without having to evaluate every

possible combination will be desirable. Varshney shows that including monotonic fusion

rules eliminates the majority of the poor performers. A detailed definition of monotonic

fusion rules is found on pages 63-64 of Varshney [16]. Before proceeding further, a formal

definition of fusion is: Let R be a set of rules:

R = {r : L × L −→ L}

Label fusion with respect to ρ is:

ρ(r∗(A,B)) = max
r∈R

ρ(r(A,B)) > max{ρ(A), ρ(B)} (2.5)

Monotonicity of fusion rules is analogous to the monotonicity of switching functions or

finding the simplest disjunctive normal form for a given truth function [6]. Examples of

poor performers which never escape the chance line are the constant fusion rules which

either always assign the target label, or always the non-target label. When fusing multiple

classification systems, exclusionary rules are not desirable. Suppose we had classification

systems A, B, and C. A fusion rule which says always believe A and disregard systems B

and C is not a fusion rule, since it does not deliver results strictly better than any individual

classification system in Equation 2.5. If each classifier is doing better than chance, it will

become evident that Boolean meet(AND) and join(OR) are all that is needed to optimize

the label fusion.
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The focus of our research will be restricted to label fusion. Further we require that

each classifier being combined has identical labels. Since the classifiers being combined are

ordered towards the same target/no target label, and due the desire for monotonic optimal

fusion rules, we only need consider the Boolean“OR” and the Boolean“AND”. Use of

the“NOT” unary operator is not necessary for optimal fusion. There are no exceptions. In

the case of the classifier that operates under the chance line, a application of the“NOT”

to that classifier would precede any attempt to fuse with other classifiers.

2.6 Boolean Algebra

The definition of a Boolean Algebra is given below [9] [1].

Definition 4. A Boolean Algebra is an algebraic structure, denoted by (A ,=,∧,∨,⇁)

where

A is a nonempty set of elements;

= denotes element equality;

∧ is a binary operation on elements in A called AND, conjunction, or meet;

∨ is a binary operation on elements in A called OR, disjunction, or join;

⇁ is a unary operation on elements in A called NOT or negation (or complementation).

And the following axioms hold true:

1. A is closed w.r.t. ∧,∨ and ⇁. For every a, b ∈ A

a ∧ b ∈ A a ∨ b ∈ A
⇁
a ∈ A

2. A is associative w.r.t. ∧ and ∨. For every a, b, c ∈ A

(a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∨ b) ∨ c = a ∨ (b ∨ c)

17



3. A is commutative w.r.t. ∧ and ∨. For every a, b ∈ A

a ∧ b = b ∧ a a ∨ b = b ∨ a

4. A has unique identities w.r.t. ∧ and ∨. There exists unique elements l, u ∈ A such

that for every a ∈ A

a ∧ u = a a ∨ l = a

5. A is absorptive w.r.t. ∧ and ∨. For every a, b ∈ A

a ∧ (a ∨ b) = a a ∨ (a ∧ b) = a

6. A is distributive w.r.t. ∧ and ∨. For every a, b, c ∈ A

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

7. A contain complements w.r.t. ∧ and ∨. For every a ∈ A

a ∧⇁
a = l a ∨⇁

a = u

There are several other properties that follow from these axioms, see [1] for a larger

list.

2.7 Lattice

Definition 5. A Lattice is an algebraic structure, denoted by (L ,=,∧,∨) where

L is a nonempty set of elements;

= denotes element equality;

∧ is a binary operation on elements in L called AND, conjunction, or meet;

∨ is a binary operation on elements in L called OR, disjunction, or join.
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And the following axioms hold true:

1. L is closed w.r.t. ∧and∨. For every a, b ∈ L

a ∧ b ∈ L a ∨ b ∈ L

2. L is associative w.r.t. ∧ and ∨. For every a, b, c ∈ L

(a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∨ b) ∨ c = a ∨ (b ∨ c)

3. L is commutative w.r.t. ∧ and ∨. For every a, b ∈ L

a ∧ b = b ∧ a a ∨ b = b ∨ a

4. L has unique identities w.r.t. ∧ and ∨. There exists unique elements l, u ∈ L such

that for every a ∈ L

a ∧ u = a a ∨ l = a

5. L is absorptive w.r.t. ∧ and ∨. For every a, b ∈ L

a ∧ (a ∨ b) = a a ∨ (a ∧ b) = a

The lattice contains only combinations of meets and joins, which are the monotonic

subset of all possible combinations of meet, joins, and complements in the Boolean algebra

(See page 41 of [15]). When we investigate the optimum combination of classifiers, we are

only interested in unique monotonic rules [16].
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III. Main Results

3.1 Introduction

If it can be established that there exists an epimorphism between a Boolean algebra of

ROC curves and a Boolean algebra of classification system families, then finding the best

combination of classification system families can be done by combining their respective

ROC curves, obviating the need for additional testing of each and every combination.

Given how expensive it might be to generate each datum on a single ROC curve, imagine

how expensive it would become to generate each datum on every ROC curve arising out

of a Boolean algebra. To put this in perspective, for any k two-label classifiers, there are

22k possible Boolean combinations [16]:

Number of Systems Number of Fusion Rules

2 16

3 256

4 65,536

For the purposes of label fusion of identical labels, utilizing ROC curves which all fall

above the chance line, there is no need to include the NOT as it would be counterproductive

towards improving overall classification performance. Utilizing only the Boolean join and

meet, our Boolean algebra reduces to a lattice[16]. If we can show that a join between two

ROC curves is epimorphicly equivalent (onto) to an OR (join) between their respective

classification systems, and if we can show the same for the AND (meet), then we can show

it for any finite combination using meets and joins. Since we are interested in optimizing

the best combination of a finite number of classification systems, it will be good to know

that what we learn from optimizing ROC performance will be equivalent to optimization

of the classification systems.

The first step will be to show that the meet and join of ROC curves is equivalent to

the AND and OR of classification families.
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3.2 OR Formula

We will capitalize on the development of Schubert [12] which proves the formula for

the OR of ROC curves. We start with the development of PTP (Aθ∨Bφ) and PFP (Aθ∨Bφ)

[12]. Recall that Ln = {n}.

PTP (Aθ ∨Bφ) = 1− PFN (Aθ ∨Bφ)

= 1− P ([Aθ ∨Bφ]\(Ln)|Et)

= 1− P (A\
θ(Ln) ∩B\

φ(Ln)|Et)

= 1− P (A\
θ(Ln)|Et)P (B\

φ(Ln)|Et) by independence

= 1− PFN (Aθ)PFN (Bφ)

= 1− [1− PTP (Aθ)] [1− PTP (Bφ)]

= PTP (Aθ) + PTP (Bφ)− PTP (Aθ)PTP (Bφ). (3.1)

PFP (Aθ ∨Bφ) = 1− PTN (Aθ ∨Bφ)

= 1− P ([Aθ ∨Bφ]\(Ln)|En)

= 1− P (A\
θ(Ln) ∩B\

φ(Ln)|En)

= 1− P (A\
θ(Ln)|En)P (B\

φ(Ln)|En) by independence

= 1− PTN (Aθ)PTN (Bφ)

= 1− [1− PFP (Aθ)] [1− PFP (Bφ)]

= PFP (Aθ) + PFP (Bφ)− PFP (Aθ)PFP (Bφ). (3.2)

Let r ∈ [0, 1] be a value for the probability of false positive for the fused classifier COR
θ,φ =

Aθ ∨Bφ, then fAθ∨Bφ(r) is the value of the probability of true positive for classifier COR
θ,φ.

For p, q, r ∈ [0, 1] define

Θp = {θ ∈ Θ : PFP (Aθ) = p}

Φq = {φ ∈ Φ : PFP (Bφ) = q}

ΨOR
r = {(θ, φ) ∈ Θ× Φ : PFP (COR

θ,φ) = r}.

21



Theorem 2. For every r ∈ [0, 1] then

ΨOR
r =

⋃
p,q∈[0,1]
p+q−pq=r

Θp × Φq.

Proof. Choose r ∈ [0, 1] and let it be fixed. Let

(θ′, φ′) ∈
⋃

p,q∈[0,1]
p+q−pq=r

Θp × Φq

then there exists some p′,q′ ∈ [0, 1] such that θ′ ∈ Θp′ , φ′ ∈ Φq′ , and p′ + q′ − p′q′ = r.

From the definitions of Θp, Φq, and ΨOR
r we have

p′ = PFP (Aθ′)

q′ = PFP (Bφ′)

r = PFP (COR
θ,φ)

which implies

PFP (Aθ′) + PFP (Bφ′)− PFP (Aθ′)PFP (Bφ′) = r = PFP (COR
θ′,φ′)

and so

(θ′, φ′) ∈ ΨOR
r .

thus, ⋃
p,q∈[0,1]
p+q−pq=r

Θp × Φq ⊆ ΨOR
r .

On the other hand, let (θ′, φ′) ∈ ΨOR
r then PFP (COR

θ′,φ′) = r. Observe that θ′ ∈ Θp′ for

some p′ ∈ [0, 1] and φ′ ∈ Φq′ for some q′ ∈ [0, 1] we have that 1−p′ ∈ [0, 1] and 1−q′ ∈ [0, 1]

so that (1− p′)(1− q′) ∈ [0, 1] and therefore,

1− (1− p′)(1− q′) ∈ [0, 1].
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Since

1− (1− p′)(1− q′) = p′ + q′ − p′q′

then

p′ + q′ − p′q′ ∈ [0, 1].

Thus, there exists real numbers p′ and q′ such that

p′ + q′ − p′q′ = r

which implies that

(θ′, φ′) ∈
⋃

p,q∈[0,1]
p+q−pq=r

Θp × Φq.

Since (θ′, φ′) were chosen arbitrary then,

ΨOR
r ⊆

⋃
p,q∈[0,1]
p+q−pq=r

Θp × Φq.

Combining results we have set equality

ΨOR
r =

⋃
p,q∈[0,1]
p+q−pq=r

Θp × Φq.

Since r ∈ [0, 1] was chosen arbitrarily these sets are equal for every r ∈ [0, 1].

To form the ROC curve for the fused classification system, we want to maximize

PTP (Aθ∨Bφ) and minimize PFP (Aθ∨Bφ). Consider the constrained optimization problem
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for every r ∈ [0, 1]:

fA∨B(r) = max
(θ,φ)∈ΨOR

r

PTP (Aθ ∨Bφ)

= max
(θ,φ)∈ΨOR

r

PTP (Aθ) + PTP (Bφ)− PTP (Aθ)PTP (Bφ)

= max
(θ,φ)∈

⋃
p,q∈[0,1]
p+q−pq=r

Θp×Φq
PTP (Aθ) + PTP (Bφ)− PTP (Aθ)PTP (Bφ)

= max
p,q∈[0,1]
p+q−pq=r

max
(θ,φ)∈Θp×Φq

PTP (Aθ) + PTP (Bφ)− PTP (Aθ)PTP (Bφ)

= max
p,q∈[0,1]
p+q−pq=r

max
(θ,φ)∈Θp×Φq

[1− [1− PTP (Aθ)] [1− PTP (Bφ)]]

= max
p,q∈[0,1]
p+q−pq=r

[
1− min

Θp×Φq
[1− PTP (Aθ)] [1− PTP (Bφ)]

]

= max
p,q∈[0,1]
p+q−pq=r

[
1− min

θ∈Θp
[1− PTP (Aθ)] min

φ∈Φq
[1− PTP (Bφ)]

]

= max
p,q∈[0,1]
p+q−pq=r

[
1− [1−max

θ∈Θp
PTP (Aθ)][1− max

φ∈Φq
PTP (Bφ)]

]
= max

p,q∈[0,1]
p+q−pq=r

[1− [1− fA(p)] [1− fB(q)]]

= max
p,q∈[0,1]
p+q−pq=r

[fA(p) + fB(q)− fA(p)fB(q)]

Note that q is a function of p such that p + q − pq = r. Solving for q in terms of p for r

fixed yields

q = Q(p) =
r − p
1− p

for 0 ≤ p ≤ r. Therefore, an equivalent formula is

fA∨B(r) = max
p,q∈[0,1]
p+q−pq=r

[fA(p) + fB(q)− fA(p)fB(q)]

= max
p∈[0,r]

[fA(p) + fB(Q(p))− fA(p)fB(Q(p))] . (3.3)
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Now that we have a formula for the join [12], this motivates the creation of a new symbol

that represents this operation. Given f, g ∈ R we will write

[f t g](r) ≡ max
p,q∈[0,1]
p+q−pq=r

[f(p) + g(q)− f(p)g(q)] (3.4)

We read f t g as “f or g”. We use the symbol t rather than ∨ in order to distinguish it

from dealing with classification systems [9].

Next we will test to see if this operation satisfies the properties of a lattice.

1. (idempotent) Since A ∨ A = A it follows that

fA t fA = fA∨A = fA

2. (commutativity) Testing for commutativity of the join,

fA t fB = fA∨B = fB∨A = fB t fA

By commutativity of the families with regard to the join ∨, then the commutativity

of the join t is satisfied.

3. (associativity) Observe that

(fA t fB) t fC = f(A∨B)∨C = fA∨(B∨C) = fA t (fB t fC)

4. (identity) Define fN(p) ≡ 0 for every p ∈ [0, 1]. Then

fA t fN = fA

5. (maximal element) Define fT(p) ≡ 1 for every p ∈ [0, 1]. Then

fA t fT = fT

25



3.3 AND Formula

We also will employ the development of Schubert [12] which develops the formula

for the AND of ROC curves. Consider the development of the probabilities of true and

false positive (PTP (Aθ∧Bφ) and PFP (Aθ∧Bφ), respectively) for the AND label-fusion rule

under the assumption of independence. Recall Lt = {t}

PTP (Aθ∧Bφ) = P ([Aθ ∧Bφ]\(Lt)|Et)

= P (A\
θ(Lt) ∩B\

φ(Lt)|Et)

= P (A\
θ(Lt)|Et)P (B\

φ(Lt)|Et)

= PTP (Aθ)PTP (Bφ). (3.5)

PFP (Aθ∧Bφ) = P ([Aθ ∧Bφ]\(Lt)|En)

= P (A\
θ(Lt) ∩B\

φ(Lt)|En)

= P (A\
θ(Lt)|En)P (B\

φ(Lt)|En)

= PFP (Aθ)PFP (Bφ). (3.6)

Let p be a value for the probability of false positive for classifier Aθ then fA(p) is the value

of the probability of true positive for classifier Aθ. Similarly, let q be a value for the

probability of false positive for classifier Bφ then fB(q) is the value of the probability of

true positive for classifier Bφ . Let r be a value for the probability of false positive for the

fused classifier Aθ∧Bφ, then fAθ∧Bφ(r) is the value of the probability of true positive for

classifier Aθ∧Bφ. Define the sets

Θp = {θ ∈ Θ : PFP (Aθ) = p}

Φq = {φ ∈ Φ : PFP (Bφ) = q}

ΨAND
r = {(θ, φ) ∈ Θ× Φ : PFP (Aθ∧Bφ) = r}.
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Theorem 3. For every r ∈ [0, 1] then

ΨAND
r =

⋃
p,q∈[0,1]
pq=r

Θp × Φq.

Proof. Choose r ∈ [0, 1] and let it be fixed. Let

(θ′, φ′) ∈
⋃

p,q∈[0,1]
pq=r

Θp × Φq

Then θ′ ∈ Θp′ and φ′ ∈ Φq′ for some p′, q′ ∈ [0, 1] such that p′q′ = r. From the definitions

of Θp, Φq, and ΨAND
r we see that

p′ = PFP (Aθ′)

q′ = PFP (Bφ′)

r = PFP (Aθ∧Bφ)

which implies

PFP (Aθ′)PFP (Bφ′) = PFP (Aθ∧Bφ)

and therefore, (θ′, φ′) ∈ ΨAND
r . Since (θ′, φ′) were arbitrary and hence, p′, q′ ∈ [0, 1] then

ΨAND
r ⊇

⋃
p,q∈[0,1]
pq=r

Θp × Φq.

Let (θ′, φ′) ∈ ΨAND
r then PFP (Aθ∧Bφ) = r. For some p′, q′ ∈ [0, 1] such that θ′ ∈ Θp′ and

φ′ ∈ Φq′ , we observe that

p′q′ = PFP (Aθ′)PFP (Bφ′) = PFP (Aθ∧Bφ) = r

which implies

(θ′, φ′) ∈ Θp′ × Φq′ ⊆
⋃

p,q∈[0,1]
pq=r

Θp × Φq.
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Hence

ΨAND
r ⊆

⋃
p,q∈[0,1]
p+q−pq=r

Θp × Φq

Combining set containments yields set equality. Since r ∈ [0, 1] was chosen arbitrary, then

ΨAND
r =

⋃
p,q∈[0,1]
pq=r

Θp × Φq

for all r ∈ [0, 1].

To form the ROC curve for the fused classification system, we want to maximize

PTP (Aθ∧Bφ) and minimize PFP (Aθ∧Bφ). Consider the constrained optimization prob-

lem for every r ∈ [0, 1]:

fA∧B(r) = max
(θ,φ)∈ΨAND

r

PTP (Aθ∧Bφ)

= max
(θ,φ)∈ΨAND

r

PTP (Aθ)PTP (Bφ)

= max
(θ,φ)∈

⋃
p,q∈[0,1]
pq=r

Θp×Φq
PTP (Aθ)PTP (Bφ)

= max
p,q∈[0,1]
pq=r

[
max

(θ,φ)∈Θp×Φq
PTP (Aθ)PTP (Bφ)

]

= max
p,q∈[0,1]
pq=r

[
[max
θ∈Θp

PTP (Aθ)][max
φ∈Φq

PTP (Bφ)]
]

= max
p,q∈[0,1]
pq=r

fA(p)fB(q).

Next we will test to see if this operation satisfies the properties of a lattice.

1. (idempotent)Since A ∧ A = A it follows that

fA u fA = fA∧A = fA

2. (commutativity) Testing for commutativity of the join,

fA u fB = fA∧B = fB∧A = fB u fA
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By commutativity of the reals with regard to multiplication, the commutivity of the

meet is satisfied.

3. (associativity) Observe that

(fA u fB) u fC = f(A∧B)∧C = fA∧(B∧C) = fA u (fB u fC)

4. (identity)

fA u fT = fA

5. (minimal element)

fA u fN = fN

3.4 Epimorphism

Our main result is the following theorem [9].

Theorem 4. Let G = {A(1),A(2), . . . ,A(K)} be a collection of K families of total classifica-

tion systems that are mutually independent. Let (CSF (G ),=,∧,∨) denote the Lattice of to-

tal, independent classification system families generated by G . Let F = {fA(1) , fA(2) , . . . , fA(K)}

be the collection of K ROC curves corresponding to G . Then (ROC(F ),=,u,t) is a Lat-

tice of ROC curves that is epimorphic to (CSF (G ),=,∧,∨).

Proof. Define the mapping

F : (CSF (G ),=,∧,∨)→ (ROC(F ),=,u,t)

to be

F (A) ≡ fA.

Then it is clear that

Dom(F ) = CSF (G )

and,

F (A ∨ B) = F (A) t F (B)
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while,

F (A ∧ B) = F (A) u F (B)

then it is clear that

Ran(F ) = ROC(F ).

If A 6= B but fA = fB then F is not one-one. Thus, the lattices CSF (G ) and ROC(F )

are epimorphic.
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IV. Examples

The best way to show the power of label fusion is to incorporate formulas 3.7 and 3.3 for

AND and OR into some Matlab code and visually evaluate the results.

Suppose we have three ROC curves from classification systems A,B,C; with the

curves defined as follows:

fA(p) =


2p, 0 ≤ p ≤ 0.4

p/3 + 2/3, 0.4 ≤ p ≤ 1.0

fB(p) = tanh(4p)

fC(p) = p1/3

The following plots will show how these ROC curves combine, and how the optimal

fusion rules result in better performance overall.

4.1 Two Classifiers

With only two systems, fusion can either be the AND, or the OR. Which one is

better is dependent on the shape of the original ROC curves.

4.2 Three Classifiers

Using only AND’s and OR’s from the Lattice, that is the monotonic combinations,

we can see that combining classifiers has benefits which range across the total ROC curve.

It should be noted in Figure 4.5 that the majority vote, delivers remarkably good results.
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Figure 4.1: ROC Curves of Classification System Families A and C.

Figure 4.2: ROC Curves of Classification Systems A and C, Label Fused.
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Figure 4.3: ROC Curves of Classification System Families A, B, and C.

Figure 4.4: ROC Curves of Classification Systems A, B, and C, Label Fused.
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Figure 4.5: ROC Curves of Classification Systems A, B, and C with Majority Rule.
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V. Conclusions

5.1 Summary

We began this thesis discussing the need for optimal target detection arising in many

different fields. It was proposed that the combination of multiple classification systems

might lead to more optimal target detection performance. We restricted our study to

the label fusion of multiple independent two-label classification systems. By doing so

we were able to quantify the performance of their combination in the same way as is

done for the individual systems; by means of the ROC curve. Provided our assumptions

were maintained, we found that the ROC curve of two classification systems which were

AND’ed was onto the meet of the individual ROC curves. We found the same result for

the ROC of the OR’ed classification systems and the ROC of their join. These results were

checked against a list of properties of binary operators to convince us that we were working

with lattices, and that the Lattice of Classification System Families is epimorphic to the

Lattice of ROC curves. We applied the label fusion techniques to some examples to show

visually how increased ROC performance may be achieved by the optimal combination of

classification systems. The majority vote was a stellar performer for the systems we chose to

test. What we did not show, and possibly cannot show, is that a given ROC curve is one-one

with the classification system which produced it. Since a ROC curve is a measure of how

well a classification system is performing, it may not be unique, as multiple classification

systems might enjoy the same measure of performance. So we held short from claiming

that the lattice of ROC curves is isomorphic to the lattice of classification systems. Even

though our developments only represented a surjective relationship between classification

system families and their ROC curves, it still was and is a noteworthy accomplishment.

Given the enormous cost of building and testing combinations of classification systems,

and generating their ROC performance, testing the lattice of ROC curves in software with

existing individual ROC curves can represent a significant cost savings in the design of

optimal classification systems.
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5.2 Future Work

It may be possible to show, and it may be worth proving, that the ROC curves of

optimal combinations of classification systems are unique, allowing us to assert that there

exists an isomorphism between the lattice of ROC curves and the lattice of classification

systems. This might prove useful when attempting to reverse engineer what went into each

classification system given its ROC performance.

It might also be worthwhile to prove that the lattice of ROC curves is indeed a

distributive lattice. This would require that it satisfy the distributive property. We were

not able to verify this.

We briefly discussed some different ways of evaluating the ROC performance of

a given combination of classification systems. Area Under the Curve (AUC), Neyman-

Pearson, and Bayesian Risk were examples. If a functional could be defined that could

predict optimal ROC performance without having to form the set of ROC curves generated

by the lattice of classification system families, a further cost savings might be achieved by

reducing the amount of computation to deliver optimal performance.
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